Metal Chelates of Sulphur-containing Polyamine Macrocycles and Oxygenation of the Corresponding Cobalt(II) Complexes †

Mutsuo Kodama

Department of Chemistry, College of General Education, Hirosaki University, Bunkyo, Hirosaki 036, Japan Tohru Koike, Noriko Hoshiga, Ryosuke Machida, and Eiichi Kimura * Department of Medicinal Chemistry, Hiroshima University School of Medicine, Kasumi, Hiroshima 734, Japan

The protonation and complex formation of macrocyclic polyamines containing a sulphur donor atom, 1-thia-4,7,10-triazacyclododecane (L⁴) and 1-thia-4,7,11,14-tetra-azacyclohexadecane (L⁵), have been investigated with the metal ions Co¹¹, Ni¹¹, Cu¹¹, Hg¹¹, and Fe¹¹. The equilibrium and kinetic constants for formation of the dioxygen adducts of the cobalt(1) chelates in aqueous solutions are also reported, and compared with previous data for the analogous macrocycles containing nitrogen, oxygen, and pyridine instead of sulphur. The values of log K_{ML} for the macrocyclic polyamines follow the trend N > S > O. Oxygenation of the cobalt(1) complexes of L⁴ and L⁵ yields μ -peroxo-adducts as with the nitrogen and oxygen analogues, and the O₂-affinity order is $N \ge S > O$.

The interaction of dioxygen with metal complexes has attracted considerable attention for its intrinsic interest and as a model for biological phenomena.¹⁻³ Most of the previous work in aqueous solutions has employed acyclic aliphatic polyamines,⁴ amino acids or peptides ⁵ as typical ligands and almost exclusively Co¹¹ as the metal ion.

Recently it was found that structural modifications of saturated macrocyclic polyamine ligands confer a variety of interesting and useful properties upon the enclosed metal ions and their reactions with O_2 .⁶⁻¹⁶ For homologous cobalt(II) macrocyclic tetra-amine complexes the cavity size is the sole factor that determines the structure and stability of the O₂ adducts; the smaller (with respect to the size of Co¹¹) 12- (L¹) and 13-membered macrocycles yield µ-peroxo-µ-hydroxospecies, that of the larger ring being more stable, while a 14membered homologue gives a monobridged µ-peroxoadduct.⁸ The O₂ adduct of a larger 15-membered tetra-amine complex immediately decomposes.⁸ A pyridyl donor in a 16membered penta-amine macrocycle L8 stabilizes an otherwise very unstable 2:1 Fe-O₂ adduct in aqueous solutions, which may be the first model of hemerythrin, a biological O₂ carrier.¹⁰ Two imide anions in a 16-membered penta-amine macrocycle can provide high-spin Ni¹¹ with reversible O₂ binding as well as O₂-activating abilities.¹¹ Finally, certain macrocyclic polyamine complexes of Cu¹¹ and Ni¹¹ can exhibit strong interactions with the superoxide anion $O_2^{-,12,13}$

The present study deals with new macrocyclic polyamine ligands that are modifications of the prototype tetra-amine $(L^1)^8$ and penta-amine (L^2) ligands ⁹ where one of the ring NH groups is replaced by the softer donor sulphur: 1-thia-4,7,10-triazacyclododecane (L⁴)¹⁷ and 1-thia-4,7,11,14-tetraazacyclohexadecane (L5). The stabilities of the metal chelates formed by these ligands with Co¹¹, Fe¹¹, Ni¹¹, Cu¹¹, and Hg¹¹ were first investigated to determine the effects of the replacement of a nitrogen by a sulphur atom.¹⁸ Then, the equilibrium and rate constants for the reaction of the cobalt(II) complexes with molecular oxygen were determined. The stabilities of the complexes of the homologue $L^{3,10}$ containing the harder donor atom oxygen were also studied for comparison. Very recently,4 the co-ordinating tendencies of the acyclic ligands L⁶ and L⁷ towards Co¹¹ and the oxygenation of the corresponding complexes were reported.

Experimental

Syntheses.—The preparation of ligand L⁴ has briefly been communicated.¹⁷ We describe it in more detail. A mixture of dimethyl thiodiglycolate (5.4 g, 30 mmol) and 1,5-diamino-3azapentane (3.1 g, 30 mmol) in absolute methanol (600 cm³) was refluxed for 3 d. Concentration of the solution to *ca*. 50 cm³ precipitated 1.1 g of 1-thia-4,7,10-triazacyclododecane-3,11-dione, m.p. 212 °C (decomp.), M^+ 217, which was reduced with a large excess of diborane in refluxing tetrahydrofuran (thf) (150 cm³) for 3 h. After treatment with 6 mol dm⁻³ HCl and then NaOH, L⁴ was extracted into EtOH and twice recrystallized from CH₃CN; yield 0.37 g, m.p. 208 °C (Found: C, 50.9; H, 10.1; N, 22.5%; M^+ 189. Calc. for C₈H₁₉N₃S: C, 50.8; H, 10.1; N, 22.2%; M^+ 189. Silica gel t.l.c.: R_f 0.61 in CHCl₃–MeOH–28% aqueous NH₃ (5: 2: 0.5). ¹H N.m.r. (CDCl₃): δ 3.0–2.4 (m, 19 H).

1-*Thia*-4,7,11,14-*tetra*-azacyclohexadecane, L⁵. A mixture of dimethyl thiodiglycolate (3.0 g, 17 mmol) and 1,9-diamino-3,7-diazanonane (2.2 g, 14 mmol) in absolute MeOH (600 cm³) was refluxed for 9 d. Evaporation of the solvent left a solid product, 1-thia-4,7,11,14-tetra-azacyclohexadecane-3,15-dione, which was recrystallized from n-butanol; yield 0.8 g, m.p. 137–138 °C, M^+ 274. After reduction of the cyclic diamide (0.6 g) with a large excess of diborane, L⁵ was purified as its tetrahydrochloride salt (0.6 g), m.p. 245–246 °C (Found: C, 33.8; H, 6.7; N, 14.5. C₁₁H₂₆N₄S·4HCl requires C, 34.0; H, 6.8; N, 14.4%). Silica gel t.l.c.: R_f 0.52 in CHCl₃–MeOH–28% aqueous NH₃ (1 : 2 : 0.5): m/z 246 (M^+ as free base). ¹H N.m.r. (taken as free base in CDCl₃): δ 3.0–2.6 (m, 10 H), 2.6 (s, 4 H), and 1.9–1.6 (m, 2 H).

Reagents and Apparatus.—Metal ion stock solutions were prepared and standardized as described before.¹⁸ The polarographic apparatus was as used previously.¹⁸⁻²³ For the potentiometric titrations we used a Kyoto Electronics AT-117A model automatic pH meter (equipped with glass and silver-silver chloride electrodes) calibrated with standard HCl and NaOH (both 10⁻³ mol dm⁻³ at I = 0.2 mol dm⁻³ with NaClO₄) to read —log [H⁺] rather than activity. For O₂ uptake a Yellow Springs oxygen monitor (model 53) was employed.

Potentiometric Measurements.—The ligand hydrochloride salts (50 cm³ solutions) were titrated potentiometrically with

[†] Non-S.I. unit employed: B.M. $\approx 9.27 \times 10^{-24}$ A m².

Table 1. Typical initial-rate data for the reaction of Co¹¹ with L⁴ and L⁵ under an argon atmosphere at 25 °C and I = 0.2 mol dm⁻³

nd 1.2	mol dm ⁻³		pН	dm ³ mol ⁻¹ s ⁻¹
1.2	1.0		-	
	1.0	200	4.78	$4.9_7 \times 10^{-2}$
1.2	1.0	200	5.19	$8.2_9 \times 10^{-2}$
1.2	1.0	200	5.55	$1.5_4 \times 10^{-1}$
1.2	1.0	50	5.55	$6.2_5 \times 10^{-2}$
1.2	3.0	200	5.55	$1.5_{0} \times 10^{-1}$
5.0	1.0	200	5.55	$1.5^{\circ} \times 10^{-1}$
1.2	1.0	200	4.68	2.27
1.2	1.0	200	4.96	2.86
1.2	1.0	200	5.30	4.3
1.2	1.0	50	5.30	1.7
1.2	3.0	200	5.30	4.3
5.0	1.0	200	5.30	4.3
	1.2 1.2 1.2 5.0 1.2 1.2 1.2 1.2 1.2 1.2 1.2 5.0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

standard NaOH solution (CO₂-free) in the presence of equimolar Fe¹¹ (10⁻³ mol dm⁻³), Co¹¹ (1.5 × 10⁻³ mol dm⁻³), and Ni¹¹ (10⁻³ mol dm⁻³) in an argon atmosphere, as described before.^{8,9} The corresponding aerobic titration curves for Co¹¹ yielded the oxygenation constants. The molar concentration of O₂ in air-saturated aqueous solution is 2.7 (2.3) × 10⁻⁴ mol dm⁻³ at 25 (35) °C.²⁴ All of the solutions were adjusted to 0.2 mol dm⁻³ ionic strength by addition of NaClO₄.

Oxygen-uptake Measurements.—To an air-saturated unbuffered solution was added $[CoL]^{2+}$ complex and the accompanying change in O₂ concentration was measured at 35 °C. For calibration we used a triethylenetetra-amine (trien) complex of Co¹¹ that is known to form a 2 : 1 $[CoL]^{2+}-O_2$ complex.¹ The experiments were repeated three times.

Kinetic Measurements.— $[CoL]^{2+}$ Complex formation. The rates of reaction of Co^{2+} with L in acetate buffers (0.2 mol dm⁻³, 4.6 < pH < 5.7) in an argon atmosphere were measured

with anodic polarographic apparatus²⁵ by monitoring the decreasing anodic wave height of the uncomplexed L. The observed rate constants were determined by the initial-slope method (to 20% completion of the overall reactions). Typical rate data are shown in Table 1.

O₂ Uptake by [CoL]²⁺. Deoxygenated solutions of [CoL]²⁺, prepared *in situ* by mixing Co²⁺ with L (5% excess) in tris-(hydroxymethyl)methylamine, NH₂C(CH₂OH)₃ (for L⁴), or acetate buffers (for L⁵) (complete complexation in *ca.* 1 h), were mixed with a known concentration of O₂ in the same buffers. The kinetics of the [CoL]²⁺-O₂ formation were measured with a stopped-flow apparatus by monitoring the increasing absorbance at 370 nm. The initial-slope method (to 20% completion of the overall reactions) was employed to determine the rate constants. Typical rate data are shown in Table 2.

Magnetic Susceptibility.—Solution magnetic susceptibilities $(\mu_{eff.})$ were measured using the Evans method ²⁶ on a Hitachi R-40 n.m.r. (90 MHz) spectrometer. The complex solution

Table 2. Typical initial-rate data for the reaction of $[CoL]^{2+}$ with O₂ at 25 °C and I = 0.2 mol dm⁻³

	10 ³ [CoL ²⁺] ₀	$10^{3}[O_{2}]$	10 ³ [Buffer]	$10^{-2}k^{a}$
Ligand		mol dm ⁻³		dm ³ mol ⁻¹ s ⁻¹
L4 b	2.0	0.135	100	3.91
	2.0	0.0675	100	4.0
	2.0	0.033	100	3.8
	4.0	0.135	100	4.01
	2.0	0.135	200	3.82
L ^{5 c}	0.5	0.135	200	180
	2.0	0.135	200	170
	0.5	0.067	200	180
	0.5	0.033	200	210
	0.5	0.135	200	200
	1 10	1 -1	constants	NH.CCH.OH)

• Observed (from initial slope) rate constants. • NH₂C(CH₂OH)₃ buffer, pH 7.50. • Acetate buffer, pH 5.70.

Table 3. Comparison of protonation constants for quadri- and quinque-dentate ligands

Ligand	$\log K_1$	$\log K_2$	log K ₃	log K₄	$\log K_s$
L ^{1 a}	10.7	9.7	1.7	0.9	
L2 b	10.64	9.49	7.28	1.7	1.5
L ^{3 c}	9.35	7.90	4.90	ca. 3	
L ⁴ d	9.53	8.15	3.09		
	(9.23	7.95	2.9)		
L ⁵ d	9.33	8.85	4.49	3.2	
	(9.03	8.65	4.28	3.0)	
L ⁶ °	9.81	9.24	6.89	5.98	
L7 e	9.78	9.10	6.51	5.64	
Acyclic N ₅	10.36	9.65	8.50	4.70	2.40

^a From ref. 19. At 25 °C and $I = 0.20 \text{ mol } \text{dm}^{-3}$. ^b From ref. 22. At 25 °C and $I = 0.20 \text{ mol } \text{dm}^{-3}$. ^c From ref. 9. At 35 °C and $I = 0.20 \text{ mol } \text{dm}^{-3}$. ^c This study at 25 °C (35 °C) and $I = 0.20 \text{ mol } \text{dm}^{-3}$. Confidence limits are ± 0.005 . ^c From ref. 4. At 25 °C. ^f 1,11-Diamino-3,6,9-triazaundecane. From D. B. Moss, C. Lin, and D. B. Rorobacher, J. Am Chem. Soc., 1973, 95, 5179. At 25 °C and $I = 0.1 \text{ mol } \text{dm}^{-3}$.

 $(2 \times 10^{-2} \text{ mol dm}^{-3} \text{ in borate buffers})$ with 2% Bu'OH was loaded into a standard 5-mm n.m.r. tube, into the centre of which was placed a 1.7-mm capillary and Teflon insert loaded with 2% Bu'OH in borate buffer.

Results

Ligand Protonation Constants.—Mixed protonation constants [equation (1)] were determined from the hydrogen-ion concentrations (= pH) of aqueous solutions of each ligand

$$H^{+} + H_{n-1}L^{(n-1)+} \underbrace{\overset{K_{n}}{=}}_{K_{n}} H_{n}L^{n+},$$

$$K_{n} = [H_{n}L^{n+}]/[H^{+}][H_{n-1}L^{(n-1)+}] \quad (1)$$

after each increment of base added. The determined values of log K_n for L⁴ and L⁵ are summarized in Table 3, along with those for the related ligands previously reported.

Metal Chelate Formation Constants.—A typical set of potentiometric titration curves for the ligand and metal (Ni, Co, Fe)-ligand equilibria is shown in Figure 1. The metal-ligand equilibria were best described by equation (2) in the buffer pH regions ($4 \le pH \le 5$). The hydrolysis of Co²⁺

$$M - L \stackrel{K_{ML}}{\longrightarrow} ML, K_{ML} = [ML]/[M][L] \qquad (2)$$

Figure 1. Anaerobic potentiometric titration curves of $L^{5.4}$ HClO (1 × 10⁻³ mol dm⁻³), alone (a) and in the presence of Fe¹¹ (b), Ni¹¹ (c) ($c_L = c_M = 1 \times 10^{-3} \text{ mol dm}^{-3}$), and Co¹¹ (d) ($c_L = c_M = 1.5 \times 10^{-3} \text{ mol dm}^{-3}$) at $I = 0.2 \text{ mol dm}^{-3}$ and 25 °C; a is the number of moles of base added per mol of ligand

(aq) or formation of $[CoL(OH)]^+$ can be neglected in the light of the reported value of K_{OH} {= $[Co(OH)^+]/[Co^{2+}][OH^-]$ } (log $K_{OH} = 5.1$ at 35 °C) ²⁷ and the pH ranges used: pH > 4.75 for L⁴ and pH > 5.0 for L⁵. The K_{ML} values can be calculated from the mass-balance equations involving the total metal, total ligand, and total hydrogen-ion concentrations; equations for the triamine ¹⁸ (= L⁴) and tetra-amine ligands ⁹ (= L⁵) were derived previously. Apparently, the protonated chelate species $[M(HL)]^{3+}$ were not formed in sufficient concentration to be detected with our calculation method.

The chelation of Cu¹¹ is so strong that virtually 100% of the macrocyclic ligands become complexed upon mere mixing of the ligand hydrochloride salts and Cu¹¹. Hence, for determination of the corresponding complexation constants the polarographic method described previously ¹⁹⁻²² was employed. The formation constants for Hg¹¹ were determined by the anodic polarographic technique used previously for L^{1 23} and L^{2,18}

All of the stability constants for Cu¹¹, Ni¹¹, Co¹¹, Fe¹¹, and Hg¹¹ are summarized in Table 4. Relevant literature values are also given for comparison.

Oxygen Complex Formation Constants.—The cobalt(II)sulphur-containing macrocycles are readily oxygenated. The L⁴ complex is dark green which is unusual for μ -peroxoadducts of cobalt(II)-polyamine complexes ¹ (the μ -hydroxo- μ peroxo-adduct with L¹ is brown),¹⁰ while the L⁵ complex is brown as is the L² complex that was identified as a μ -peroxoadduct. Strong u.v.-visible absorption peaks indicative of O₂ adducts ¹ occur at 375 nm (ϵ 6 800 dm³ mol⁻¹ cm⁻¹) for L⁴ and 340 nm (shoulder, ϵ 7 700 dm³ mol⁻¹ cm⁻¹) for L⁵. The stoicheiometry of [CoL⁴]²⁺-O₂ was determined to be 0.47 : 1 at 35 °C and pH 8—9 (initial [CoL²⁺] = 1.0 × 10⁻⁴ mol dm⁻³). For the L⁵ complex, using an identical method,

Ligand Cu²⁺ Co²⁺ Ni²⁺ Hg²⁺ Fe²⁺ L^{1 a} 24.80 13.79 13.76 25.50 ppt. L^{2 b} 27.10 15.85 18.10 27.38 ppt. L^{3 c,d} 15.62 ± 0.03 11 42 12.30 ± 0.03 < 17ppt. L⁴ ° 17.98 ± 0.05 11.11 ± 0.03 9.45 ± 0.03 7.82 ± 0.03 24.32 ± 0.05 L⁵ ° $\textbf{24.14} \pm \textbf{0.05}$ 13.39 ± 0.03 12.66 ± 0.03 10.29 ± 0.03 25.15 ± 0.05 18.0 L6 e 9.5 12.5 L7 e 19.7 11.5 15.5 Acyclic N5 b 22.8 13.7 17.4 ppt. 24.8

Table 4. Complex formation constants (log K_{ML} with confidence limits) of quadri- and quinque-dentate ligands with various metal ions

^e Refs. 8, 19, and 23. ^b Refs. 9, 10, 18, and 22. ^c This study at 25 °C (for Cu²⁺ and Hg²⁺) or 35 °C (Co²⁺, Ni²⁺, and Fe²⁺) and I = 0.20 mol dm⁻³. ^e Ref. 9. ^e Ref. 4.

Figure 2. Potentiometric titration curves for L⁴·3HClO₄ alone (a) and in the presence of equimolar Co¹¹ (1.5×10^{-3} mol dm⁻³) under argon (b) and air (c) at I = 0.2 mol dm⁻³ and 25 °C

the ratio was 0.48 : 1 at 35 °C and pH 7.90 (initial [CoL²⁺] = 1.0×10^{-4} mol dm⁻³). These data suggest formation of μ -peroxo-adducts.

Typical potentiometric equilibrium curves for L^4 with Co^{2+} under both argon and air atmospheres are shown in Figure 2. In air, the formation constants of the 2 : 1 $[CoL]^{2+}-O_2$ complexes could be determined from equation (3). For the triamine

$$K_{O_2} = \frac{[LCo^{-}O_2^{-}CoL^{4+}]}{[Co^{2+}]^2[L]^2[O_2]}$$
(3)

L⁴, the K_{02} value can be calculated from equation (4) derived in the same manner as described previously for tetra-amines.^{8,9}

$$K_{O2} = \frac{[3(\alpha_{\rm H})_{\rm L} - \beta_{\rm H}]^3[\alpha(\alpha_{\rm H})_{\rm L} - \beta_{\rm H}c_{\rm L}]}{2(3c_{\rm L} - \alpha)^4(\alpha_{\rm H})_{\rm L}^2[O_2]}$$
(4)

The titration data (in the region $1 \le a \le 2.5$) are fitted by equation (4); a plot of the numerator vs. the denominator of the right-hand side of equation (4) was linear passing through the origin and the slope gave K_{02} .

For the 2:1 $[CoL]^{2+}-O_2$ adduct with L⁵, equation (5)

$$K_{02} = \frac{[4(\alpha_{\rm H})_{\rm L} - \beta_{\rm H}]^3[\alpha(\alpha_{\rm H})_{\rm L} - \beta_{\rm H}c_{\rm L}]}{2(4c_{\rm L} - \alpha)^4(\alpha_{\rm H})_{\rm L}^2[O_2]}$$
(5)

derived from (3) gave the best fit with the pH titration data. The definitions of the terms in this equation and its derivation **Table 5.** Equilibrium constants for the oxygenation of cobalt(11 complexes of quadri- and quinque-dentate ligands at 35 °C and I = 0.20 mol dm⁻³ (unless noted otherwise)

Ligar J	log <i>К</i> о _{2.0н} ′ ^а	$\log K_{O2}$ ' b
L · c	0.8	
trien ^c	6.9	
L ² d		7.9
L3		4.6 ± 0.1
L4		5.7 ± 0.1
L ^s		7.3 ± 0.1
Acyclic N5 °		15.8
Loe		2.2
L' •		8.4
L ⁸ ^f		9.6

^{*a*} $K_{O2,OH}' = [(CoL)_2(O_2)(OH)^{3+}][H^+]/[CoL^{2+}]^2[O_2];$ units of dm³ mol⁻¹. ^{*b*} $K_{O2}' = [(CoL)_2(O_2)^{4+}]/[CoL^{2+}]^2[O_2];$ units of dm⁶ mol⁻. ^{*c*} Ref. 8. ^{*d*} Ref. 9. ^{*c*} Ref. 4. ^{*f*} Ref. 10.

Table 6. Rate constants (with confidence limits) in dm³ mol⁻¹ s⁻¹ for the formation of oxygen adducts at 25 °C and I = 0.20 mol dm⁻³

Ligand	10 ⁻² k _H ^a	k 2H 4	k *
Lic	2.5	2.5×10^{-2}	7.1×10^{2}
L ^{2 d}		2.4×10^{2}	2.2×10^{5}
L4	$\textbf{0.66} \pm \textbf{0.07}$	$(3.8 \pm 0.4) \times 10^{-2}$	$(3.9 \pm 0.4) \times 10^2$
Ľ۶	30 ± 10	4.7 \pm 0.5	$(1.8 \pm 0.4) \times 10^{4}$

^a See equation (6) in the text. ^b Second-order rate constant for the reaction between $[CoL]^{2+}$ and O_2 . ^c Ref. 8. ^d Ref. 9.

were described in our previous papers.^{8,9} The oxygenation constants obtained are listed in Table 5, along with those for relevant polyamines.

Kinetics of O_2 Adduct Formation.—Reaction of Co^{11} with L in deoxygenated acetate buffers. By exactly the same procedure applied to L¹ and L², the reactive species were shown to be $[Co(O_2CMe)]^+$ and monoprotonated HL⁺ and diprotonated H₂L²⁺ for both L⁴ and L⁵ systems. The common rate law is as in equation (6).⁸

rate =
$$k_{\rm H}[{\rm Co}({\rm O}_2{\rm CMe})^+][{\rm HL}^+] + k_{2\rm H}[{\rm Co}({\rm O}_2{\rm CMe})^+][{\rm H}_2{\rm L}^{2+}]$$
 (6)

Reaction of preformed $[CoL]^{2+}$ with O_2 . The rates for L⁴ and L⁵ were first order in $[CoL^{2+}]$ and first order in $[O_2]$. The overall second-order rate constants were independent of pH and of the buffer concentrations used. All the rate constants are listed in Table 6, along with other relevant values.

Discussion

Complexation Constants.—Table 3 compares the protonation constants of a set of quadri- and quinque-dentate polyamine ligands. The basicities of the macrocycles are significantly affected by the inclusion of the heteroatoms. The lower basicities of the first two (see log K_1 and log K_2 for L⁴) or three nitrogens (log K_1 to log K_3 for L³ and L⁵) with respect to the corresponding values for L¹ or L² are attributed to the higher electronegativities of the S and O atoms. On the other hand, the relative basicities of the third (L⁴) or fourth nitrogens (L³ and L⁵) are reversed. The anchimeric assistance available at the higher proton affinities of neighbouring nitrogens (a nitrogen is not easily protonated if a neighbouring atom is protonated) might explain the lower electron densities available for the corresponding nitrogens of L⁴ or L⁵.

The overall lower electron densities on the macrocyclic ligands should result in weaker metal-ligand interactions and hence lower K_{ML} values (Table 4). The values for the complexes of Cu¹¹, Co¹¹, Ni¹¹, and Fe¹¹ with the 16-membered quinquedentate series L^2 , L^3 , and L^5 and the 12-membered quadridentate series L1 and L4 disclose the stability trend N > S > O. The softer S donor will bind more strongly with these transition-metal ions than the harder O donor, despite the similar ligand basicities for S and O (see Table 3). The same trend was seen in the acyclic homologues.⁴ A general strong affinity of S for Hg^{2+} is illustrated by the outstandingly large stabilities of the L⁴ and L⁵ complexes. Another significant demonstration of the effect of the S donors is the appreciable stabilization of the otherwise very airsensitive iron(II)-tetra-amine complexes in aqueous solution. which made possible the present pH-metric titrations.

It is interesting to compare the relative complexation tendencies of the macrocyclic and acyclic polyamines. Thus, log K_{ML} values for Cu¹¹ and Co¹¹ with L⁵ are higher than the corresponding constants with L⁷. Similarly, Co¹¹ and Ni¹¹ form more stable complexes with L³ than with the acyclic counterpart L⁶. This is a manifestation of the 'macrocyclic effects' pertaining to all nitrogen polyamines.^{19,22} The reason why the complex [NiL⁵]²⁺ (log $K_{ML} = 12.66$) is less stable than the acyclic [NiL⁷]²⁺ (log $K_{ML} = 15.5$)⁴ is not understood.

Dioxygen Complexes.—Like other high-spin cobalt(II) complexes of quinquedentate polyamines, the pink high-spin cobalt(II) complex of L⁵ ($\mu_{eff.} = 4.8$ B.M. at pH 7) rapidly interacts with O₂ to form a brown monobridged 2:1 μ peroxo-species. as shown by the measurement of O₂ uptake, pH-metric titration, u.v.-visible absorption, and magnetic measurements ($\mu_{eff.} \approx 0$ B.M.). Its oxygenation constant K_{O_2}' {= [LCO-O_2-CoL⁴⁺]/[CoL²⁺]²[O₂] = $K_{O_2}/(K_{coL})^2$ [see equation (37) of ref. 8]} is nearly comparable with that for [CoL²]²⁺, but much bigger than that for [CoL³]²⁺ (see Table 5).

For pink $[CoL^4]^{2+}$ (high spin, $\mu_{eff.} = 4.8$ B.M.), the O₂uptake measurements, diamagnetism, and lack of e.s.r. signals all indicate a 2 : 1 μ -peroxo-adduct, analogous to the L¹ case.⁹ However, unlike $[CoL^1]^{2+}$ which yields a dibridged μ -peroxo- μ -hydroxo-species, the L⁴ complex remains as a μ -peroxo-bridged adduct in the comparable pH region, as shown by the pH-metric titration results (the end-point occurs at a = 4.5 for L¹ and 3 for L⁴). This difference may be rationalized by considering the monobridged complex of L⁴ to possess less Co³⁺ and peroxo-characters, in compliance with the soft S donor. The greenish colour of the $[CoL^4]^{2+}$ -O₂ adduct may reflect some μ -superoxo-character (*i.e.* less electron density on the co-ordinated O₂). The reduction potentials E_4 for Co in the O₂ adduct are -0.28 V vs. s.c.e. with L^4 and -0.40 V with L^1 , in agreement with the cobalt oxidation state being somewhat lower in the first case.

Further evidence in support of the $[CoL^4]^{2+}-O_2$ adduct formation comes from a decomposition experiment: after acidification of a solution of the $[CoL^4]^{2+}-O_2$ complex (0.14 mmol dm⁻³, initial pH 10.15) to pH 1.5 with a few drops of concentrated HClO₄ under a nitrogen atmosphere, it slowly (over 1 h) decomposes (as shown by the absorption decrease at 375 nm) to a colourless solution containing Co²⁺, L⁴ (as protonated species), and free O₂. The liberation of O₂ (a two-step wave at -0.15 V vs. s.c.e.) was verified polarographically. Moreover, upon raising the solution pH to 10.5 in air, the green $[CoL^4]^{2+}-O_2$ solution was again obtained, the recovery being more than 95% based on the increased absorbance at 375 nm.

Kinetics of Formation of $[CoL]^{2+}$ and Their O₂ Adducts.— As with other complexes of nitrogen homologues ⁸ and L²,⁹ the times required for equilibration of pH-metric titrations were the same under anaerobic and aerobic conditions for the present macrocycles (25—30 min with L⁴ and *ca*. 10 min with L⁵ for each addition of 0.1 mol dm⁻³ NaOH titrant). This suggests slow formation of $[CoL]^{2+}$, followed by fast uptake of O₂.

Analysis of the second-order kinetics for the formation of $[CoL^4]^{2+}$ in acetate buffers under anaerobic conditions suggests a reaction scheme previously found for complexation of L¹ with Co²⁺, ⁸ Cu²⁺, Zn²⁺, Cd²⁺, and Pb²⁺, ²⁵ the reactive forms of the macrocycles being HL⁺ and H₂L²⁺ and of the metal ion, $[M(O_2CMe)]^+$. The magnitudes of the second-order rate constants k_{2H} for the major reaction pathways (hence the overall complexation rates, too) are nearly the same for L¹ and L⁴.

The kinetics of formation of $[CoL^5]^{2+}$ in acetate buffers are similar. The rate constant for the diprotonated ligand species, the major reactant in acetate buffer, is larger than the corresponding term for L⁴, which accounts for the shorter equilibration time for $[CoL^5]^{2+}$. However, in comparison with $[CoL^2]^{2+}$,⁸ this k_{2H} value is much smaller due to the lower ligand basicity.

The rates of O_2 uptake by preformed $[CoL]^{2+}$ chelates in NH₂C(CH₂OH)₃ (for L⁴) or in acetate buffer (for L⁵) exhibit a first-order dependence in $[CoL^{2+}]$ and also in $[O_2]$ for both macrocycles, with rate laws identical to those for L^{1 8} and L².⁹ The difference in the structures of the O₂ adducts (μ -peroxo- μ -hydroxo with L¹ and μ -peroxo with L⁴) does not affect the rate-controlling steps for L¹ and L⁴. Comparison of the rates for $[CoL]^{2+}$ formation and O₂ uptake under the same conditions, *e.g.* $[Co^{2+}] = [L] = [CoL^{2+}] = [O_2] = 10^{-4} \text{ mol dm}^{-3}$ and pH 5 (which actually occur during the potentiometric titrations), indicates that the reaction of $[CoL]^{2+}$ with O₂ is *ca.* 10⁴ times faster than the formation of $[CoL]^{2+}$, with both L⁴ and L⁵. This is compatible with the earlier conclusion that the rate of $[CoL]^{2+}$ formation determines the rate of O₂ uptake in aerobic potentiometric titrations.

The second-order rate constant k for O_2 uptake with $[CoL^5]^{2+}$ is ca. 10^2 times larger than that with $[CoL^4]^{2+}$. This is a result of the extra axial co-ordination (either by N or S) that would enhance the dissociation of co-ordinated water (at the *trans* position) upon addition of O_2 . A parallel rate difference was seen for L^2 and L^1 , see Table 6. The kinetic effect of replacing a nitrogen atom by a less basic sulphur on the O_2 uptake is seen in the ca. ten-fold decrease in rate constant k for L^5 vs. L^2 .

References

- 1 G. McLendon and A. E. Martell, Coord. Chem. Rev., 1976, 19, 1.
- 2 F. Basolo, B. M. Hoffman, and J. A. Ibers, Acc. Chem. Res., 1975, 8, 384.

- 3 R. D. Jones, D. A. Summerville, and F. Basolo, Chem. Rev., 1979, 79, 139.
- 4 S. A. Bedell, J. H. Timmons, A. E. Martell, and I. Murase, Inorg. Chem., 1982, 21, 874 and refs. therein.
- 5 W. R. Harris and A. E. Martell, J. Am. Chem. Soc., 1977, 99, 6746.
- 6 E. Kimura, Yakugaku Zasshi, 1982, 102, 701.
- 7 K. Ishizu, J. Hirai, M. Kodama, and E. Kimura, Chem. Lett., 1979, 1045.
- 8 M. Kodama and E. Kimura, J. Chem. Soc., Dalton Trans., 1980, 327.
- 9 M. Kodama and E. Kimura, Inorg. Chem., 1980, 19, 1871.
- 10 E. Kimura, M. Kodama, R. Machida, and K. Ishizu, Inorg. Chem., 1982, 21, 595.
- 11 E. Kimura, A. Sakonaka, R. Machida, and M. Kodama, J. Am. Chem. Soc., 1982, 104, 4255.
- 12 E. Kimura and A. Sakonaka, Biochim. Biophys. Acta, 1981, 678, 172.
- 13 E. Kimura and A. Yatsunami, Biochim. Biophys. Acta, 1983, 745, 37.
- 14 R. Machida, E. Kimura, and M. Kodama, Inorg. Chem., 1983, 22, 2055.
- 15 C. Wong, J. A. Switzer, K. P. Balakrishnan, and J. F. Endicott, J. Am. Chem. Soc., 1980, 102, 5511.

- 16 T. Geiger and F. C. Anson, J. Am. Chem. Soc., 1981, 103, 7489.
- 17 I. Tabushi, H. Okino, and Y. Kuroda, Tetrahedron Lett., 1976, 4339.
- 18 M. Kodama and E. Kimura, J. Chem. Soc., Dalton Trans., 1978, 1081.
- 19 M. Kodama and E. Kimura, J. Chem. Soc., Dalton Trans., 1976, 116.
- 20 M. Kodama and E. Kimura, J. Chem. Soc., Dalton Trans., 1976, 1720.
- 21 M. Kodama and E. Kimura, J. Chem. Soc., Dalton Trans., 1976, 2341.
- 22 M. Kodama and E. Kimura, J. Chem. Soc., Dalton Trans., 1978, 104.
- 23 M. Kodama and E. Kimura, J. Chem. Soc., Dalton Trans., 1976, 2335.
- 24 Chemical Handbook of Japan (Kagaku-binran), Chemical Society of Japan, Maruzen, 1973, p. 571.
- 25 M. Kodama and E. Kimura, J. Chem. Soc., Dalton Trans., 1977, 2269.
- 26 D. F. Evans, J. Chem. Soc., 1959, 2003.
- 27 J. A. Bolzen and A. J. Aruia, Electrochim. Acta, 1962, 7, 589.

Received 21st June 1983; Paper 3/1054